On pointwise estimates of positive definite functions with given support

نویسنده

  • Mihail N. Kolountzakis
چکیده

The following problem originated from a question due to Paul Turán. Suppose Ω is a convex body in Euclidean space R or in T, which is symmetric about the origin. Over all positive definite functions supported in Ω, and with normalized value 1 at the origin, what is the largest possible value of their integral? From this Arestov, Berdysheva and Berens arrived to pose the analogous pointwise extremal problem for intervals in R. That is, under the same conditions and normalizations, and for any particular point z ∈ Ω, the supremum of possible function values at z is to be found. However, it turns out that the problem for the real line has already been solved by Boas and Kac, who gave several proofs and also mentioned possible extensions to R and non-convex domains as well. We present another approach to the problem, giving the solution in R and for several cases in T. In fact, we elaborate on the fact that the problem is essentially one-dimensional, and investigate nonconvex open domains as well. We show that the extremal problems are equivalent to more familiar ones over trigonometric polynomials, and thus find the extremal values for a few cases. An analysis of the relation of the problem for the space R to that for the torus T is given, showing that the former case is just the limiting case of the latter. Thus the hiearachy of difficulty is established, so that trigonometric polynomial extremal problems gain recognition again. MSC 2000 Subject Classification. Primary 42B10 ; Secondary 26D15, 42A82, 42A05.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pointwise Estimates Formultivariate Interpolation Using Conditionally Positive Definite Functions

We seek pointwise error estimates for interpolants, on scattered data, constructed using a basis of conditionally positive deenite functions of order m, and polynomials of degree not exceeding m-1. Two diierent approaches to the analysis of such interpolation are considered. The former uses distributions and reproducing kernel ideas, whilst the latter is based on a Lagrange function approach. E...

متن کامل

GENERALIZED POSITIVE DEFINITE FUNCTIONS AND COMPLETELY MONOTONE FUNCTIONS ON FOUNDATION SEMIGROUPS

A general notion of completely monotone functionals on an ordered Banach algebra B into a proper H*-algebra A with an integral representation for such functionals is given. As an application of this result we have obtained a characterization for the generalized completely continuous monotone functions on weighted foundation semigroups. A generalized version of Bochner’s theorem on foundation se...

متن کامل

Decomposition of H*-Algebra Valued Negative Definite Functions on Topological *-Semigroups

In the present paper, among other results, a decomposition formula is given for the w-bounded continuous negative definite functions of a topological *-semigroup S with a weight function w into a proper H*-algebra A in terms of w-bounded continuous positive definite A-valued functions on S. A generalization of a well-known result of K. Harzallah is obtained. An earlier conjecture of the author ...

متن کامل

Some numerical radius inequalities with positive definite functions

 ‎Using several examples of positive definite functions‎, ‎some inequalities for the numerical radius of‎ ‎matrices are investigated‎. ‎Also‎, ‎some open problems are stated‎.

متن کامل

Radial basis interpolation on homogeneous manifolds: convergence rates

Pointwise error estimates for approximation on compact homogeneous manifolds using radial kernels are presented. For a C positive definite kernel κ the pointwise error at x for interpolation by translates of κ goes to 0 like ρ, where ρ is the density of the interpolating set on a fixed neighbourhood of x. Tangent space techniques are used to lift the problem from the manifold to Euclidean space...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003